博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
hdu 5769 Substring 后缀数组 + KMP
阅读量:5256 次
发布时间:2019-06-14

本文共 3624 字,大约阅读时间需要 12 分钟。

题意:在S串中找出X串出现的不同子串的数目? 其中1 <= |S| < $10^5$

官方题解: 处理出后缀数组中的sa[]数组和height[]数组。在不考虑包含字符X的情况下,不同子串的个数为

\sum_{1}^{length}length−\left(sa[i]+height[i]\right)

如果要求字符X,只需要记录距离sa[i]最近的字符X的位置(用nxt[sa[i]]表示)即可,个数

\sum_{1}^{length}length-max\left(nxt\left[sa\left[i\right]\right],sa\left[i\right]+height\left[i\right]\right)

理解:后缀数组height[i]就是sa[i]与sa[i-1]的LCP,在后缀数组中求解全部的不同子串(之前只写过SAM处理所有不同子串..)还是比较好理解的,在一定要含有子串x时,需要先kmp求出所有匹配的位置,在处理到第i个后缀时,取max即可表示一定含有X,并且是不同的子串;

#pragma comment(linker, "/STACK:1024000000,1024000000")#include
using namespace std;#define rep0(i,l,r) for(int i = (l);i < (r);i++)#define rep1(i,l,r) for(int i = (l);i <= (r);i++)#define rep_0(i,r,l) for(int i = (r);i > (l);i--)#define rep_1(i,r,l) for(int i = (r);i >= (l);i--)#define MS0(a) memset(a,0,sizeof(a))#define MS1(a) memset(a,-1,sizeof(a))#define MSi(a) memset(a,0x3f,sizeof(a))#define inf 0x3f3f3f3f#define pb push_back#define MK make_pair#define A first#define B second#define eps 1e-8#define zero(x) (((x)>0?(x):-(x))
PII;typedef long long ll;typedef unsigned long long ull;template
void read1(T &m){ T x = 0,f = 1;char ch = getchar(); while(ch <'0' || ch >'9'){ if(ch == '-') f = -1;ch=getchar(); } while(ch >= '0' && ch <= '9'){ x = x*10 + ch - '0';ch = getchar(); } m = x*f;}template
void read2(T &a,T &b){read1(a);read1(b);}template
void read3(T &a,T &b,T &c){read1(a);read1(b);read1(c);}template
void out(T a){ if(a>9) out(a/10); putchar(a%10+'0');}inline ll gcd(ll a,ll b){ return b == 0? a: gcd(b,a%b); }template
inline void gmax(T1& a, T2 b){ if(a < b) a = b;}template
inline void gmin(T1& a, T2 b){ if(a > b) a = b;}const int maxn = 100001;int sa[maxn], t[maxn],t2[maxn],c[maxn],w[maxn];int cmp(int *r,int a,int b,int l){ return r[a] == r[b] && r[a+l] == r[b+l];}void build_sa(char *r,int n,int m){ int i, j, p, *x = t, *y = t2; for(i = 0; i < m;i++) c[i] = 0; for(i = 0; i < n;i++) c[x[i] = r[i]]++; for(i = 1; i < m;i++) c[i] += c[i-1]; for(i = n-1; i >= 0; i--) sa[--c[x[i]]] = i; for(j = 1, p = 1; p < n; j <<= 1, m = p){ for(p = 0, i = n - j; i < n;i++) y[p++] = i; for(i = 0; i < n; i++) if(sa[i] >= j) y[p++] = sa[i]-j; for(i = 0; i < n; i++) w[i] = x[y[i]]; for(i = 0; i < m; i++) c[i] = 0; for(i = 0; i < n; i++) c[w[i]]++; for(i = 0; i < m; i++) c[i] += c[i-1]; for(i = n-1; i >= 0; i--) sa[--c[w[i]]] = y[i]; swap(x,y); for(p = 1, x[sa[0]] = 0, i = 1; i < n; i++) x[sa[i]] = cmp(y, sa[i-1], sa[i], j)? p-1: p++; if(p >= n) break; m = p; }}char S[maxn], X[maxn];int height[maxn], rk[maxn];void getHeight(int n){ for(int i = 1; i<= n; i++) rk[sa[i]] = i; for(int i = 0, j, k = 0; i < n; height[rk[i++]] = k) for(k? k--:0, j = sa[rk[i] - 1]; S[i+k] == S[j+k]; k++);}int f[maxn];void getfail(char *p){ f[0] = f[1] = 0; int n = strlen(p); for(int i = 1;i < n;i++){ int j = f[i]; if(j && p[i] != p[j]) j = f[j]; f[i+1] = (p[i] == p[j] ?j+1:0);// i+1会递推到第n位 }}vector
vec;void Find(char *T, char *p){ vec.clear(); ll j = 0,n = strlen(T),m = strlen(p); for(int i = 0;i < n;i++){ while(j && T[i] != p[j]) j = f[j]; if(T[i] == p[j]) j++; if(j == m){ vec.pb(i); j = 0; i -= m-1; } } sort(vec.begin(), vec.end());}int main(){ //freopen("data.txt","r",stdin); //freopen("out.txt","w",stdout); int T, kase = 1; scanf("%d",&T); while(T--){ scanf("%s%s", X, S); int len = strlen(S), m = strlen(X); S[len] = '#';S[len+1] = 0; build_sa(S,len+1,'z'+1); getHeight(len); getfail(X); Find(S,X); vec.pb(len); ll ans = 0; rep1(i,1,len){ if(sa[i]+m-1 > len) continue; int nxt = lower_bound(vec.begin(), vec.end(), sa[i]+m-1) - vec.begin(); ans += len - max(vec[nxt],sa[i] + height[i]); } printf("Case #%d: %lld\n", kase++, ans); } return 0;}

转载于:https://www.cnblogs.com/hxer/p/5724311.html

你可能感兴趣的文章
单例模式
查看>>
NPOI处理Word文本中上下角标
查看>>
Android笔记 Handler
查看>>
设计模式-(17)策略模式 (swift版)
查看>>
如何阅读大型前端开源项目的源码(转)
查看>>
error:Your local changes to the follwing files would be overwritten by merge
查看>>
java.util.Arrays类详解
查看>>
C# Hashtable
查看>>
idea搭建tocmat
查看>>
NYOJ-626-intersection set(二分查找)
查看>>
web上传
查看>>
poj-1423 NYOJ_69 数字长度 斯特林公式 对数应用
查看>>
Postman调试依赖登录接口的3种方法
查看>>
phpstudy升级mysql版本到5.7 ,重启mysql不启动
查看>>
什么样的经历,才能领悟成为架构师? >>>
查看>>
Cocos2d-x内置粒子系统
查看>>
Mysql 修改root 密码
查看>>
vue实现表计监测界面
查看>>
mysql 索引技巧
查看>>
函数进阶
查看>>